Weak solutions to mean curvature flow respecting obstacles
نویسندگان
چکیده
منابع مشابه
Weak Solutions to Mean Curvature Flow Respecting Obstacles I: the Graphical Case
We consider the problem of evolving hypersurfaces by mean curvature flow in the presence of obstacles, that is domains which the flow is not allowed to enter. In this paper, we treat the case of complete graphs and explain how the approach of M. Sáez and the second author [13] yields a global weak solution to the original problem for general initial data and onesided obstacles.
متن کاملMean curvature flow with obstacles
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...
متن کاملTranslating Solutions to Lagrangian Mean Curvature Flow
We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.
متن کاملMean curvature flow with obstacles: existence, uniqueness and regularity of solutions
We show short time existence and uniqueness of C solutions to the mean curvature flow with obstacles, when the obstacles are of class C. If the initial interface is a periodic graph we show long time existence of the evolution and convergence to a minimal constrained hypersurface.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2020
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.201708_005